Welcome to 2D Materials Toolkit, a series of articles where we cover key methods used in fabrication, characterisation, and measurement of atomically thin layered materials and their heterostructures. This series is designed for early career researches working with 2D materials, but will also be helpful for more mature scientists and engineers who would like to expand their research into this field. We will focus on practical aspect of different techniques, aiming to give you skills that you can apply in a lab today.
Over the last 8 years of my research career, I was fortunate to be a member of four groups working with 2D materials and collaborate with many more, and I would often find that some things that were considered common knowledge were not so common after all. This discovery went both ways: sometimes I was able to show my colleagues a method that substantially simplified their experiment, other times they helped me find an easy solution to a problem I’d been working on for several months. Perhaps this shouldn’t be surprising, as the field of 2D material research is still very young and rapidly expanding, and there hasn’t been enough time to establish standard fabrication and measurements protocols.
The aim of this series is put together a knowledge base covering the most important methods used in research of atomically thin materials and van der Waals heterostructures. The articles are intended to be quick start guides rather than a comprehensive manuals, giving you essential information to start your own research. We are planning to edit and expand them over time, so make sure to check the revision history at the bottom of the page. We hope you will find this useful, and please do get in touch with any comments or suggestions.